
1. UPPER AND LOWER BOUNDS ON THE SUPREMUM OF A GAUSSIAN PROCESS

Let X = (Xt)t∈T be a centered Gaussian process. Endow T with the metric τ(s, t) =
√

E[(Xt −Xs)2]. This
just means viewing X as a “curve in the Hilbert space” L2(Ω,F ,P) and its image {Xt} as a metric space
inheriting the metric from L2(Ω,F ,P). Assume that T is bounded in τ (in what follows we shall in fact have
to assume that T is totally bounded).

Let X∗ = supt∈T Xt and ‖X‖= supt |Xt |. The goal is to get upper bounds on X∗, more precisely, on quantities
like E[X∗] and P{X∗ ≥ t}. The various bounds one may consider are closely related.

(1) As a standing convention, assume that X∗ is measurable so that quantities such as P(X∗ > u) and
E[X∗] make sense. Alternately, simply assume that T is countable, in which case X∗ is indeed mea-
surable.

(2) Firstly, bounds on tail of X∗ and bounds on the expected value of X∗ imply each other as follows.
• We have E[(X∗)+] =

R ∞
0 P{X∗ > u}du. The lower side never poses a problem since X∗ ≥ Xt0 (for

any t0 ∈ T and hence E[(X∗)−]≤ E[(Xt0)−]≤ σT /
√

2π. Thus, bounds on the tail probability give
a bound for the mean.

• For the other direction, by Markov’s inequality, P{X∗ ≥ u} ≤ E[X∗
+]/u.

These two observations are general, but for Gaussian processes one can say much more. Going back
to the proof of Borell’s inequality, it can be seen that if X∗ is finite with positive probability, then it is
finite with probability 1, has sub-gaussian tails like 2exp{−x2/2σ2

T}, and has finite expectation. Of
course finiteness of expectation implies that the random variable is itself finite a.s.

(3) Secondly, bounds for X∗ and for ‖X‖ are equivalent as clear from the following exercise (taken from
Talagrand’s book).

Exercise 1. Fix any t0. Then E[‖X‖]≤ 2E[X∗]+E[|Xt0 ]≤ 3E[‖X‖].

Now we get to work and try to bound E[X∗]. Although we have talked about the supremum of a Gaussian
process in earlier lectures, all that we have said is essentially this:

(1) X∗ is well concentrated about its mean or median.

(2) If certain correlation inequalities hold, then E[X∗] can be bounded by E[Y ∗].

We have not calculated how large E[X∗] is except in one case, that of i.i.d. Gaussians. From that calculation,
we extract the following general bound.

Lemma 2. If X is a centered Gaussian process on T , then E[X∗
+]≤ 10σT

√
log |T |.

Proof. For any t ∈ T and any u > 0 we have P{Xt ≥ u} ≤ 2e−u2/2σ2
T . Hence by the union bound, P{X∗

+ ≥
u} ≤ 2|T |e−u2/2σ2

T . We use this bound when it is better than the trivial bound 1 for a probability, i.e., for
u≥ σT

√
2log(2|T |). By integrating we get E[X∗

+]≤ 5σT
√

log |T |. !

Clearly this alone will not suffice. If we try to approximate T by large finite sets for which we use the
above bound, then the bound gets worse and worse with the cardinality of the finite set. But analysing why
the above bound fails is instructive. The union bound is good when Xt are independent (recall that for i.i.d.
N(0,1) we proved that a lower bound of the order

√
log |T | also). But when Xt are strongly correlated (as

an extreme case think of Xt = ξ for all t), then the union bound greatly overestimates the actual probability.
The following lemma confirms our intuition that this is the only problem. It also sets a benchmark for what
to expect in the upper bound.

Theorem 3 (Sudakov minoration). Let X be a centered Gaussian process on T . If τ(t,s) ≥ ε for all t (= s, then
E[X∗]≥ 0.1ε

√
log |T |.
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Proof. Let ξt be i.i.d N(0,1) and let Yt = 1√
2
εξt . Then τY (t,s) = ε2 ≤ τX (t,s) for all t #= s. By Sudakov-Fernique

inequality, E[X∗]≥ E[Y ∗]≥ 0.1ε
√

log |T |. !

As an immediate corollary we get a lower bound for E[X∗] in general.

Corollary 4 (Fernique). Let X be a centered Gaussian process on T . Let Nε denote the smallest size of an ε-net in
(T,τX ). Then, (if X∗ is measurable) E[X∗] ≥ 0.1liminf

ε→0
ε
√

logNε. In particular, if the latter quantity is infinite, then

any version of the Gaussian process must be unbounded w.p.1.

The theorem shows us that the union bound only loses when comparing Gaussians that are almost equal
(must have τ(t,s) close to zero). In addition, the corollary also sets a benchmark for how small an upper
bound for E[X∗] can be.
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2. THEOREMS OF DUDLEY, FERNIQUE AND TALAGRAND ON THE SUPREMUM

Here is the basic lemma by the method of generic chaining11.

Setting: Let X = (Xt)t∈T be a stochastic process with zero mean random variables indexed by a metric space
(T,τ) such that P{|Xt −Xs| ≥ uτ(t,s)} ≤ 2exp{− 1

2 u2} for all u > 0 and for all t,s ∈ T . A particular case is of a
centered Gaussian process with τ(s, t) :=

√
E[|Xt −Xs|2].

Lemma 5 (The generic chaining bound). Let T be finite or countable. Fix t0 ∈ T and numbers uk ≥ 1. Choose any
subsets Tk ⊆ T with T0 = {t0} and such that each t ∈ T is contained in Tk for all large k. Then for any x > 0 we have

P{X∗ −Xt0 ≥ (x+1)A} ≤ Qe−x2/2

where A = sup
t∈T

∞
∑

k=1
τ(t,Tk) and Q = 2

∞
∑

k=1
|Tk| · |Tk−1|e−u2

k/2.

Proof. First take x = 0. We have Xt −Xt0 = ∑∞
k=1 Xπk

t
−Xπt

k−1
where πt

k is (one of) the closest point to t in Tk. If

Xt −Xt0 >
∞
∑

k=1
τ(t,Tk), then the kth summand in Xt −Xt0 must exceed the τ(t,πt

k) for at least one k. For any k,

the probability that |Xt −Xs| ≥ u
√

τ(t,s) for some t ∈ Tk and s ∈ Tk−1, is bounded by the kth summand in Q
(by the union bound). Put everything together and use triangle inequality liberally.

To get the inequality for general x, just replace uk by uk(1+ x). !

Motivated by this bound, we define two fundamental quantities associated to a metric space.

Definition 6. For a metric space (T,τ), define

(1) Talagrand’s γ2-functional: γ2(T ) := inf
{Tk}

sup
t

∞
∑

k=0
2k/2τ(t,Tk).

(2) Dudley’s integral: D(T ) := inf
{Tk}

∞
∑

k=0
2k/2 sup

t
τ(t,Tk).

Both infima are over all choices of the sets {Tk} subject to the condition |Tk| = 22k .

This definition amounts to choosing uk = 2k/2 in the lemma. In class I discussed why that is the correct
choice, but I don’t want to write it in detail here. Clearly γ2(T ) ≤ D(T ). The latter quantity is achieved by

choosing Tk to be a set with cardinality 22k so that it is an ε-net with the smallest possible ε. The reason for
calling D(T ) an integral is that it is bounded from above and below by constant multiples of

R ∞
0

√
logN(ε)dε,

where N(ε) is the smallest size of an ε-net in T (show this!).

Theorem 7 (Dudley’s integral). In the above setting, let N(ε) be the smallest size of an ε-net for (T,τ). Let Dτ :=
R ∞

0
√

logN(ε)dε.

E
[

sup
t∈T

Xt −Xt0

]
" Dτ and

P
{

sup
t∈T

Xt −Xt0 ≥ (x+1)Dτ

}
" e−x2/2.

There is an easy lower bound due to Fernique.

Theorem 8 (Fernique). Let F (T ) := sup
ε

ε
√

logN(ε). Then F (T ) " E[supt Xt −Xt0 ].

11This topic is beautifully explained in Talgrand’s book Generic chaining. We do not repeat the arguments in detail.
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Dudley’s upper bound and Fernique’s lower bound are almost tight, but not quite. For example, if
N(ε) = exp{−ε−c}, then for c < 1 both are finite, while for c > 1 both are infinite. Thus, it is essentially
when N(ε) = exp{−ε−1} (with lower order corrections) that an ambiguity arises. However, there is such
an ambiguity. In addition, even when both F (T ) and D(T ) are finite, they may be of different orders of
magnitude, and it is not clear whether E[supXt −Xt0 ] is like one or the other or somewhere in between.

The quantity which exactly characterizes the expected supremum is the γ2 functional. The upper bound
was proved by Fernique. The lower bound was conjectured by Fernique and proved by Talagrand.

Theorem 9 (Fernique-Talagrand). E[supt Xt −Xt0 ]" γ2(T ).

We have already proved the upper bound E[X∗ −Xt0 ] ! γ2(T ) (the first lemma!). We do not prove the
lower bound as I don’t understand it yet.

3. SOME EXAMPLES

Independent Gaussians: Let Xk ∼ N(0,σ2
k) be independent. Assume that σ2

k decreases to 0. Then τ(m,n) =
√

σ2
n +σ2

m. Note that for m < n we have σm ≤ τ(m,n)≤ σm
√

2. For simplicity let us pretend that τ(m,n) = σm∧n

(we leave it as an exercise to make appropriate modifications).
If 0 < ε < σ1, then there is a unique n such that σn≤ ε < σn−1. Then {1,2, . . . ,n} is an ε-net whence N(ε)≤ n.

Since τ(i, j) > σn−1 > ε for i, j ≤ n− 1, it is clear that N(ε) ≥ n− 1. Thus the Dudley integral is (as always
ignoring constant factors) D = ∑∞

k=2(σk−1−σk)
√

logk.

On the other hand, we may write Xn = σnξn where ξn are i.i.d. N(0,1) variables. Recall that limsup
n→∞

ξn√
2logn =

1 a.s. (if not clear, provide a proof!). Thus, supn Xn < ∞ a.s. (recall that this also implies that the supremum
has finite expectation and Gaussian tail decay) whenever limsupσn

√
logn is finite.

Thus, by choosing, for example, σn = 1√
logn log logn , we see that the Dudley integral may diverge but the

supremum is finite.

Exercise 10. Compute γ2 or at lease verify that it is finite for this choice of σns.

Trees: Let T be a rooted leafless tree. The boundary of the tree is defined as the set of all infinite, simple
paths emanating from the root12. That is,

∂T = {v : v = (v0,v1, . . .),v0 is the root and vi+1 is a child of vi}.

Fix λ > 1. Let ξv be i.i.d. N(0,1) random variables indexed by the vertices of the tree. Then, define X(v) :=
∑∞

k=0 ξvk λ−k/2.

Exercise 11. Show that X is a centered Gaussian process on ∂T with τ(v,w) := Cλλ−|v∧w|/2 where v∧w is the
last common vertex in v and w and |v∧w| is its graph distance from the root.

As the constant Cλ is unimportant, we define the metrics τλ(v,w) := λ−|v∧w|/2 for v,w ∈ ∂T .

Exercise 12. The boundary ∂T is a compact metric space under τλ.

What is the Dudley integral for τλ? If 0 < ε < 1, then there is a unique k≥ 1 such that λ−k/2 ≤ ε < λ−(k−1)/2.
Then N(ε) = |T[k]|, the cardinality of the kth generation of T . To see this, take a collection of paths, one

12The lower bounds here are all due to Fernique. Our presentation is essentially from Kahane’s book Some random series of functions.
He does not mention trees but what we call spherically symmetric trees are referred to as generalized Cantor sets there. But the essence
is the same.
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passing through each vertex of T[k]. All these paths are at distance λ−k/2 from each other and form a λ−k/2

net for ∂T . Thus, the Dudley integral is

Dλ := (
√

λ−1)
∞

∑
k=1

λ−k/2
√

log |T[k]|.

Spherically symmetric trees: Suppose that all vertices in T[k] have Mk children, for some positive integers
Mk, k ≥ 1. Such a tree is called spherically symmetric. Its special feature is that it has many automorphisms.
For example, we can permute all the subtrees emanating from any given vertex. The automorphism group
preserves each T[k] and in fact acts transitively on each generation. It extends naturally to a transitive group
action on ∂T . Thus, ∂T “looks the same everywhere”.

One of Fernique’s discoveries was that in such cases the Dudley integral provided the right lower bound!
We shall see a few theorems of this nature.

Assumption: Mk ≥ ka for some a > 0. A weaker growth condition will suffice as will be clear from the proof.

Indeed, from the previous computation, and using
√

log |T[k]| =
√

logM0 + logM1 + . . .+ logMk−1 which is

at most
√

logM0 + . . .+
√

logMk−1 we see that

Dλ ≤Cλ

∞

∑
k=0

λ−k/2
√

logMk.

On the other hand, we can get a lower bound for supv X(v) by taking the “greedy path” v∗ defined by letting
v∗0 to be the root and v∗i+1 to be the child of v∗i with the largest value of ξ (i.e., ξw ≤ ξv∗i+1

for all w← v∗i ).

Let E be the event that ξv∗k ≥
√

logMk for all k ≥ 0. If the event E occurs, then X(v∗)≥ ∑∞
k=0 λ−k/2√logMk.

To estimate P(E) we shall use the following exercise.

Exercise 13. Let ξi be i.i.d N(0,1) random variables. For any δ > 0, there exists cδ > 0 such that P{maxi≤n ξi ≥√
2(1−δ) logn} ≥ 1− e−cδn−δ/2 for any n≥ 1.

Successively conditioning on the ξ-values on the first few steps of v∗ and using independence of ξvs,
from the above exercise we deduce that

P(E)≥
∞

∏
k=1

(
1− e−cn−1/2

)
> 0.

The strict positivity of the product comes from our assumption that M j ≥ ja.
Thus, we have shown that X(v∗)≥ cDλ with probability at least c (for some small enough c). In particular,

E[X(v∗)−X(v0)]≥ cDλ (we subtract X(v0) to make the supremum non-negative). Now we would like to say
that E[supv X(v)−X(v0)] ≥ cDλ, which is of course obvious, provided it makes sense (the supremum may
not be measurable). Whenever the supremum is measurable, the Dudley integral gives the expectation of
the supremum (in this class of examples).

Exercise 14. Exact homogeneity is not needed. Let Mk be as above and suppose each vertex in generation k
has between

√
Mk and M2

k children. The tree is no longer spherically symmetric, but show Dudley integral
is a lower bound for the expected supremum.

Stationary processes: If G is a group and X is a centered Gaussian process indexed by G, then we say that

X is left-stationary if (Xhg)g
d= (Xg)g∈G for any h ∈ G. For Gaussian processes, this just means that τ(hg,hg′) =

τ(g,g′) for all g,g′,h.
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Theorem 15 (Fernique). Let G be a locally compact group and let X be a centered stationary Gaussian process on
G. Then, for any compact K ⊆ G and g0 ∈ K, we have E[supg∈K Xg−Xg0 ] ≥ cDK . If G itself is compact, we may of
course take K = G.
Sketch of the proof. Without loss of generality, assume that diaτ(G) = 1. Let S0 = {1} and for k ≥ 1 let Sk be a
maximal 2−k-separated set in Bτ(1,2−k+1) (open ball centered at the identity). All finite products of the form
g1g2 . . .gm with gi ∈ Si, are distinct (even the union over all m). Therefore, we get a spherically symmetric
tree T embedded in G by taking all such finite products as vertices, the identity element as the root, and
declaring g1 . . .gm+1 to be a child of g1 . . .gm whenever gi ∈ Si. Some observations.

(1) The vertices in T[m] form a 2−m-net for G.

(2) If gi ∈ Si, then g1 . . .gm is a Cauchy sequence in G. Thus, for every path v ∈ ∂T , we can associate an
element of G, namely gv := limvi. Indeed, by the first point, every element of G is of the form gv for
some v. However, it is possible to have gv = gw for v %= w.

(3) More generally, taking λ = 4 (we fix this choice till the end of the proof), we see that 3τ4(v,w) ≥
τ(gv,gw) but no inequality holds the other way.

The following example illustrates these points in a familiar situation.

Example 16. Let in R\Z∼= [0,1] (cyclically identify 0 to , we may take Sk = {0,2−k}. Then T[m] = {k/2m : k ≤
2m} are just dyadic rationals of the first m generations. Clearly these are all distinct. However, ∂T will be the
whole of [0,1] (in general vertices of T will be dense in G) and some points have multiple binary expansion,
for example, 2−1 +2−2 + . . . is equal to 0 in this case.

A related problem is that for any λ, the metric τλ on ∂T is quite different from the metric τ. In the example
here, 0.4999 and 0.50001 are close in τ but far in τλ. If τλ were to agree with τ, we would simply invoke the
theorem on Gaussian processes on spherically symmetric trees.

Coming back to the proof, the third point listed is not good for us, since we want to get a lower bound
for the Gaussian process on G by comparing it to a Gaussian process on ∂T (we already know that Dudley’s
integral is a lower bound on the boundary of spherically symmetric trees). However, comparison theorems
require the opposite inequality! This can be arranged by pruning the tree a little (but not too much, as we
want the Dudley integral on ∂T to be only a constant factor smaller than the Dudley integral on G!).

First, the Dudley integral. Since T[m] is a 2−m net for G, we see that DG ! ∑∞
k=0 4−k/2

√
log |Sk|. Alter-

nately, we could have said that since τ ≤ 3τ4, the Dudley integral on G is bounded by (a constant times)
the Dudley integral on ∂T which we had computed earlier to be ∑∞

k=0 4−k/2
√

log |Sk|. We now want to
prune the tree so that the Dudley integral stays about the same. For this, observe that one of the ten sums
∑k 4−(10k+r)/2

√
log |S10k+r| as r ranges from 0 to 9, must be more than 1/10 of the total sum. For simplicity of

notation, let us assume that r = 0 works. Then DG ! ∑k 4−10k/2
√

log |S10k|.
The pruning. Introduce the following family planning scheme. In generation number 0,10,20, . . ., no

change is made. For vertices in all other generations, keep only the first child and delete the rest (along with
the entire subtree beneath them). The resulting spherically symmetric tree has M j = |S j| if j = 0 (mod 10)
and M j = 1 otherwise. Thus we get a reduced tree T̃ which is still embedded in G. The nice thing about it
is that τ4(v,w)≤ 100τ(v,w) for all v,w ∈ ∂T̃ .

Note that ∂T̃ is a subset of G on which we have two Gaussian processes corresponding to the metrics τ
(the original stationary process X) and τ4 (the tree process Y ). By Sudakov-Fernique inequality, E[sup∂T̃ Y ] !
E[sup∂T̃ X ]. Of course the latter is smaller than E[supG X ]. From the lower bound on spherically symmetric
trees, D∂T̃ ! E[sup∂T̃ Y ] (strictly speaking, the assumption that we made there that M j ≥ ja is not satisfied.
We leave it as an exercise to check that the conclusions are still okay). But we already pruned in such a way
that DG ! D∂T̃ . This completes the proof that DG ! E[supG X ]. "
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